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Abstract—Reducing cycle time is a recurrent concern in the
field of business process management. Depending on the process,
various interventions may be triggered to reduce the cycle time
of a case, for example, using a faster shipping service in an
order-to-delivery process or calling a customer to obtain missing
information rather than waiting passively. However, each of these
interventions comes with a cost. This paper tackles the problem of
determining if and when to trigger a time-reducing intervention
in a way that maximizes a net gain function. The paper proposes
a prescriptive monitoring method that uses orthogonal random
forests to estimate the causal effect of triggering a time-reducing
intervention for each ongoing case of a process. Based on this
estimate, the method triggers interventions according to a user-
defined policy. The method is evaluated on two real-life datasets.

Index Terms—prescriptive process monitoring, cycle time

I. INTRODUCTION

Reducing cycle time (i.e. the time spanned between the start
and completion of a case) is a recurrent improvement objective
in the field of business process management [1]. Depending
on the process, there may be several interventions (a.k.a.
treatments) that workers may perform to reduce cycle time.
For example, in an application-to-approval process, giving a
call to a customer to obtain missing information may speed
up a case. However, such interventions come at a cost, and
they can only be done if a suitable worker is available.

In this setting, this paper tackles the following problem:
Given an intervention that in general reduces the cycle time of
a case, for which cases and at which point in the execution of a
case, should we trigger this intervention to maximise the total
net gain? Here, the total net gain is the sum of the differences
between the benefit of each intervention and its cost. To tackle
this problem, we propose a prescriptive monitoring method
that triggers interventions based on continuous observation of
the process. The method relies on a causal effect estimation
technique, namely orthogonal random forests, to estimate the
effect of an intervention on the cycle time of a case. When the
estimated causal effect exceeds a user-defined threshold (the
policy), an intervention is triggered. The method incorporates
an approach to select the policy based on estimated net gain.
We evaluate the method using two real-life datasets.

The next section motivates the approach via an example.
Sect. III reviews related work. Sect. IV introduces preliminary
concepts and notations. The proposed method is described in
Sect. V, while the evaluation is discussed in Sect. VI. Sect. VII
draws conclusions and discusses future work directions.

II. MOTIVATING EXAMPLE

We consider a loan origination process that starts when a
client submits a loan application. The submitted documents are
screened. If some documents are missing, a request for further
information is sent to the customer either by email or phone.
Handling missing document events via email takes less effort.
Historical data, though, shows that customers respond faster to
phone calls than to emails, thus reducing the cycle time. But
given that phone calls are more costly, workers would rather
only call a customer if this would speed up the process.

One approach to determine which customers to call (and
when) is by predicting the remaining time of each case and
triggering an intervention on those cases that are expected to
be most delayed w.r.t. a cycle time target [2]–[4]. However,
this approach may be ineffective. Suppose that a case is likely
to have a long cycle time because the employee handling
it is busy. If so, making a phone call to obtain the missing
information (the intervention) would consume more resources
with little effect on cycle time. A more suitable approach is to
estimate the effect of a phone call on the cycle time of each
case and to direct the interventions to cases with the highest
estimated effect. This paper pursues this approach.

III. RELATED WORK

A. Prescriptive Process Monitoring

Various prescriptive process monitoring methods have been
proposed. Teinemaa et al. [2] propose to trigger an intervention
when the probability of a case leading to a negative outcome
is above a threshold optimised w.r.t. a net gain function. The
method by Weinzierl et al. [5] uses predictive models to
determine which activity, among the most likely next activities
in the case, is correlated with higher values of a given KPI.
Metzger et al. [4] use deep learning models to generate
predictions about an ongoing case and feed these predictions
to an online reinforcement learning technique, which triggers



an intervention based on the predictions and their reliability.
The above methods tackle the problem of identifying which
cases need an intervention, while our approach aims to identify
cases that can benefit most from a given intervention.

B. Causal Inference in Process Mining

Causal inference has been widely applied in the field of
process mining. Hompes et al. [6] propose an approach to
discover cause-effect relations between aggregate character-
istics of a process (e.g. frequency of activity) and process
performance indicators (e.g. mean cycle time). Koorn et al. [7]
present a method to identify causal relations between a re-
sponse and an effect. They use statistical tests to discover
action-response-effects, where the action defines a subgroup of
cases and the response is a treatment that enhances the proba-
bility of the effect. Polyvyanyy et al. [8] present causality min-
ing, a systematic approach to discovering causal dependencies
between events encoded in large datasets. Narendra et al. [9]
use structural causal models to confirm potential cause-effect
relations identified by analysts. Qafari et al. [10] use structural
equation models to test for the existence of a causal relation
between an attribute and an outcome. They later expand the
use of SEMs in [11] for counterfactual explanation of case-
level predictions. The above studies do not quantify the effect
of a treatment at the level of an individual case. Hence,
they cannot be applied to individualized prescriptive process
monitoring, which is the focus of this paper.

In previous work [12], we use action rule mining to extract
candidate treatments correlated with a positive outcome. That
work deals only with binary case outcomes, whereas in this
paper we deal with a numerical target variable (cycle time).

IV. PRELIMINARIES AND DEFINITIONS

A. Event logs and traces

We refer to an instance of a process execution as a case. A
case consists of a set of events, where an event represents
the execution of an activity. Each event has three attributes: a
case identifier specifying which case the event belongs to, an
activity that triggered the event, and a timestamp specifying
when the event occurred. An event may have further attributes,
such as a resource that carried out the activity or an event type.

Definition 1 (Event, Trace, Event Log). An event is a tuple
(a, c, t, (d1, v1), . . . , (dm, vm)), m ∈ N0, where a is an activ-
ity name (label), c is a case identifier, t is a timestamp, and
(d1, v1) . . . , (dm, vm) are attribute-value pairs. A trace is a
finite sequence σ = 〈e1, . . . , en〉, n ∈ N0, of events with the
same case identifier. An event log L is a multiset of traces.

As we aim to estimate the causal effect of an intervention
on the cycle time of a case, we are interested in events that
occurred before the intervention. We use the notion of a k-
prefix to capture such preceding events.

Definition 2 (k-Prefix). A k-prefix of a trace 〈e1, . . . , en〉,
n ∈ N0 is a sequence 〈e1, . . . , ek〉, 0 ≤ k ≤ n.

B. Causal Inference and Causal Machine Learning

The field of causal inference is concerned with determining
the independent effect of a phenomenon on an outcome of
interest. Two causal inference frameworks are discussed in
the literature. In the causal graphical models framework, a
causal graph is constructed by a domain expert. Given a
causal graph, it is possible to ascertain whether a causal
estimand is identifiable and if so, it can be estimated using
automated methods. While this framework is focused on the
identification of causal effects, the Neyman-Rubin potential
outcomes framework is focused on the estimation of causal
effects of interventions. Hence, in this paper, we use the
Neyman-Rubin potential outcomes framework.

An intervention (a.k.a. treatment) is represented by a binary
variable T ∈ {0, 1}, where T = 1 indicates that the treatment
is applied and T = 0 that it is not. Each case in a log has two
potential outcomes: the outcome under treatment (Y 1) and the
outcome under no treatment (Y 0). Given this, the conditional
average treatment effect (CATE) is defined as follows.

Definition 3 (Conditional Average Treatment Effect). Let X
be a set of attributes that characterise a case.

CATE : θ(x) = E[Y 1 − Y 0 |X = x]

CATE is a causal estimand, meaning that in order to
estimate it, we need to have access to both Y 0 and Y 1.
However, in real-life, it is impossible to follow both potential
realities. This is known as the “fundamental problem of causal
inference” [13]. Thus, to estimate the causal estimand, we
express it via statistical estimands, such as E[Y |T =1, X] and
E[Y |T =0, X], which can be estimated from data. According
to the potential outcomes framework, CATE can be expressed
via statistical estimands only if the exchangeability, positivity,
consistency, and no interference conditions hold.

The exchangeability (a.k.a. ignorablility) condition means
that given the pre-treatment attributes X , treatment assignment
is independent of the potential outcomes. In other words, after
conditioning on X , the treatment assignment should be as
good as random, which ensures that the treated and not treated
groups are exchangeable, that is:

Y 1, Y 0 ⊥⊥ T |X .

The positivity condition means that for every set of values for
X , treatment assignment is not deterministic. So, every sub-
group of interest has some chance of getting either treatment:

P (T = t |X = x) > 0, for all t and for all x.

The consistency condition states that the potential outcome
under treatment T = t is equal to the observed outcome if the
actual treatment received is T = t:

Y = Y t if T = t for all t.

According to no interference, the potential outcomes of one
subject are not affected by the treatments received by others.

The positivity and consistency conditions can be verified
from data and by ensuring that there are no multiple definitions
of the treatment under study. However, verification of the



exchangeability condition is not straightforward. In observa-
tional data, such as event logs, there often exist variables
that influence both the treatment assignment and the outcome.
The existence of these confounding variables (or controls)
creates a non-causal association between T and Y , which can
invalidate the study. The best way to circumvent this problem
is to conduct a randomised experiment (A/B test). As we are
working with event logs, where randomisation of the treatment
is not ensured, we assume that exchangeability holds. Under
this assumption, the observed variables X contain sufficient
information needed to adjust for confounding. The adjustment
can then be carried out during the estimation step.

In many real-life use cases, including business processes,
the no interference condition can often be violated as well.
For instance, skipping an activity in one case might leave
the process worker available to perform activities in another
case, and vice versa. As a result, the potential outcomes of
the second instance are affected by the treatment applied in
the first. However, it is common to assume that a violation of
the no interference condition has only a small influence on the
causal effect estimates and is considered negligible in practice.

Next to identification, the other core problem in causal infer-
ence is estimating CATE from observational data. A large body
of works from recent years focus on using machine learning
methods for CATE estimation. A popular method is the work
by Athey et al. [14]. which is a flexible non-parametric estima-
tion method based on generalised random forests. However, it
does not allow for high dimensional set of confounders. This
problem is addressed in a method called double machine learn-
ing proposed by Chernozhukov et al. [15]. Oprescu et al. [16]
generalise the ideas from these two approaches in an approach
called orthogonal random forests.

C. Orthogonal Random Forests

We use orthogonal random forests (ORFs) to estimate the
effects of treatments on cases. When applied to the problem
of heterogeneous treatment effect estimation, ORFs assume
the data D to be in the form D = {(Ti, Yi,Wi, Xi)}ni=1,
for n observations. For each observation i, Ti is the received
treatment, Yi is the observed outcome, Wi represents potential
confounding variables, and Xi are the features capturing het-
erogeneity. The ORF method makes the assumptions captured
in the following structural equations:

Y = θ(X) · T + f(X,W ) + ε,

T = g(X,W ) + η,

where f(X,W ) models the outcome Y when no treatment
is applied, θ(X) is the treatment effect function (CATE),
and g(X,W ) captures the relationship between treatment T ,
confounders W , features X , and ε and η are unobserved
noises, such that E[ε |X,W, T ] = 0 and E[η |X,W, ε] = 0.

ORF follows the residualisation approach used in double
machine learning. Double machine learning, as the name
suggests, consists of two stages. In the first stage, a model
is fit to predict Y from X and W , and another model is fit to
predict T from X and W , that is:

Ŷ = E[Y |X,W ] and T̂ = E[T |X,W ].

In the second stage, the effects of confounding are removed
by fitting a model to predict Y − Ŷ from T− T̂ . The treatment
effect function θ(x) is defined as follows:

E[Y − Ŷ − θ(x) · (T − T̂ ) |X = x] = 0.

V. APPROACH

We aim to design a recommender system that seeks to min-
imise the cycle time of a process case in a cost-aware manner.
At the core of our system is a causal estimation module that
estimates the effect of a given treatment on a target metric.
The target is to decrease the cycle time of a process case. We
assume that the treatments are binary. For instance, suppose
that in the loan origination process discussed in Sect. II, the
default way of handling missing documents is by sending
emails to clients to request additional documents, while some
customers get phone calls instead. In this scenario, the binary
treatment options are sending emails (T = 0) or making phone
calls (T = 1). We refer to cases that got a phone call as the
treatment group and the cases that got an email as the control
group. Making a phone call should, in general, speed up the
process. However, it is not feasible to call every client because
of the associated additional costs. Thus, we want to find the
best policy for deciding which clients should get phone calls.

Our approach consists of two phases, as depicted in Fig-
ure 1. In the offline phase, case prefixes are extracted from
the log and used to train a causal effect estimation model.
Then, the best model threshold is selected. This threshold
defines a treatment policy. In the online phase, the causal
effect estimator and the selected policy are used to recommend
whether to treat or not to treat an ongoing case based on its
estimated treatment effect and the selected treatment policy.

Next, we describe the three steps of the offline phase,
namely data pre-processing, causal model construction, and
policy selection), followed by the online phase.

A. Data Pre-processing

1) Data Cleaning: First, we pre-process the log to remove
incomplete cases. We then repair missing attribute values. For
a numeric attribute, we set missing values to the median value
of that attribute. For a categorical attribute, we set missing
values to the most observed value for that attribute (the mode).

2) k-Prefix Extraction: To construct feature vectors, we
select a single prefix of length k from each case. In cases
where the treatment assignment is present in the data, k is
the length of the prefix before the actual treatment time. For
instance, given a trace σ = 〈e1, . . . , en〉, suppose that ek+1

indicates the treatment event where k + 1 ≤ n. In this case,
the selected prefix is 〈e1, . . . , ek〉. Thus, k can be different for
different cases. In cases where the treatment did not occur, we
estimate the treatment point by randomly drawing from the
distribution of prefix lengths when the treatment is present.



Figure 1: Overview of the proposed approach

3) Prefix Encoding: To apply the machine learning method
for estimating treatment effects, we need to encode trace pre-
fixes (ongoing cases) as fixed-sized feature vectors. Encoding
static case attributes is straightforward since their values do
not change during the execution of a case. However, traces
often contain dynamic event attributes whose values change
as the case unfolds. Various methods have been proposed
to encode dynamic attributes [17], including aggregation en-
coding, last-state encoding, index-based encoding, and tensor
encoding [18]. We use aggregation encoding for the activity
type and resource attributes and last-state encoding for event
attributes. Hence, the feature vector constructed from a k-
prefix contains one numeric feature for each activity type or
resource A, the number of times A appears in the k-prefix. For
other event attributes (e.g. “offered loan amount” or “type of
loan offer”), the feature vector encodes only the last value of
this attribute (e.g. the last offered loan amount). If an encoded
attributes is a categorical attribute, we apply one-hot encoding
to represent it as a numeric feature vector – a common practice
when using tree-based ensemble models, such as ORF.

4) Temporal and Workload Features: Given that we seek to
estimate treatment effects on cycle time, we include temporal
information in the feature vectors. Specifically, we include the
month, weekday, and hour of the timestamp of the last event
in the prefix, the time between the first and the last event in the
prefix, and the time between the last two events in the prefix
(i.e. the inactivity period prior to the most recent event).

We also include the number of active cases as a feature to
act as a proxy for the current workload in the process. We
do so because workload is a potential confounder, influencing
both the cycle time and the treatments (during high workloads,
cases may be delayed, and the effect of treatments might be
weaker than usual). Finally, we encode the difference between
the first event in the prefix (the start time of the case) and the
first event in the log (the start time of the log’s timeframe)
since the process might behave differently at different points
in time; hence, this feature can be a confounder.

B. Causal Model Construction

This step of the offline phase takes as input the en-
coded k-prefixes and learns a function that, given a k-prefix
〈x(1),x(2), . . . ,x(k)〉, returns a point estimate of the treatment
effect θ and the corresponding confidence interval.

We use ORFs to implement the causal model. The use of
ORFs has several advantages. ORFs support non-parametric
estimation of the target variable while allowing for a high-
dimensional set of confounding variables W . This is useful
in the context of process mining since traces typically have

a large number of event attributes, which can lead to feature
explosion. The problem is exacerbated when there is a large
number of resources and categorical attributes. Finally, due to
ORFs being asymptotically normal (i.e. the distribution of the
estimated treatment effects approaches a normal distribution
as the sample size grows), they allow for the construction of
valid confidence intervals based on bootstrapping.

An ORF requires four inputs: the target variable Y , the
treatment indicator T , features capturing heterogeneity X , and
the confounding variables W . Since this recommender system
aims to decrease cycle time, the outcome Y is the cycle time
of the process. We assume that a binary treatment is previously
identified, which is hypothesised to cause a decrease in cycle
time. In the loan origination example, this is a phone call.

As the proposed approach can be applied at an operational
level, we would like to know the treatment effect when it is
time for the process worker to decide whether to treat a case or
not. Therefore, effect heterogeneity is captured via static case-
level attributes and all event attributes (including the activity
name and the resource), and the inter-case features available at
the decision time. This means that X is a feature vector that
captures all of this information about the k-prefix after the
suitable encodings have been applied, as described above. In
this study, we assume that all of the available features derived
from the event log are also potential confounders, meaning that
all the features present in X are included in W . However, in
general, X and W do not need to be the same. A domain
expert can remove some features from W if she believes they
do not influence the treatment decision or outcome.

Armed with these definitions of Y , T , X , and W , the next
step is to train an ORF. The input data is temporally split
into the train and test sets. A separate test set is required for
the evaluation of the trained model, and for selecting the best
policy. As mentioned in the preliminaries, we need to learn
the treatment effect function θ by solving the same set of
equations as in double machine learning. This is a two-phase
approach that requires Y and T to be modeled locally at X =
x, obtaining the estimates Ŷ and T̂ . In the second stage, the
treatment effect is estimated by minimising the residual of Y
(denoted by Y − Ŷ ) on the residual of T (denoted by T − T̂ )
locally at X = x using the squared loss:

θ(x) = argminθE[(Y − Ŷ − θ · (T − T̂ ))2 |X = x]

ORFs allow the use of flexible models for the estimation
of T̂ and Ŷ . These models can be chosen based on their
performance on specific datasets. Also, at prediction time,
we have the option to use different models to residualise the
treatment and the outcome. Fitting Ŷ and T̂ locally around the



target feature X ensures that more weight is put on samples
that are similar in the feature space. A random forest with a
causal criterion is constructed to capture the similarity metric
in the X space, so that samples that are similar in the feature
space X have similar treatment effects.

C. Policy Selection

Oftentimes, applying treatments to cases comes at a cost.
Making phone calls to customers is an example of this. Having
a treatment effect estimate for every running case can help
decision makers separate the cases that would benefit from
the treatment from those that would not be affected or would
be negatively affected by it. Particularly, if the cost of the
treatment is not far below from its benefit, it is important
to carefully select a policy to determine which cases to treat.
Accordingly, in this step, we propose a policy selection module
that maximises the net benefit given the cost of the treatment
and the treatment effect estimates. Furthermore, our proposed
policy selection approach provides a way to evaluate the ORF
model that is used to estimate the treatment effects.

The first step in the policy selection module is to build a
Qini curve. Qini curves and the closely related uplift curves
provide a way to evaluate CATE estimators when the ground
truth treatment effect is not available, which is the case in all
real-world datasets [19]. Since our target variable in this study
is continuous and the goal is to reduce it, we use a modified
version of the Qini curve presented below.

Given an estimator θ̂ and k-prefixes σi (with the treatment
decision happening at the k-th event), let π be the ascending
ordering of the traces according to their estimated treatment
effect, i.e., θ̂π(σi) ≤ θ̂π(σj),∀ i < j. In addition, π(n) is used
to denote the first n percent of traces from the ordering.

Let Rπ(n) be the sum of the duration of cases in π(n), i.e.,
Rπ(n) =

∑
i∈π(n) Yi. Furthermore, let RT=1

π(n) and RT=0
π(n) be,

respectively, the sums of the durations of cases in the treated
and control groups in π(n). Also, to denote the number of
traces in the treated and control groups in π(n), we use NT=1

π(n)

and NT=0
π(n) , respectively. We now define the Qini curve as:

Qini(n) = RT=0
π(n) ×

NT=1
π(n)

NT=0
π(n)

−RT=1
π(n).

Qini(n) is the expected total reduction in cycle time,
given that the top n percent of cases selected by the ORF
model are treated (e.g. we make phone calls to the top n
percent of cases). The Qini curve can be plotted by computing
Qini(n) for different values of n. In addition to evaluating
our ORF model, we use the Qini curve for policy selection by
incorporating the cost and the benefit multipliers to create net
value curves. Suppose v is the value of reducing the cycle time
by one unit of time and c is the cost of applying the treatment
to one case. Then, the net gain of applying the treatment to
π(n) is defined as follows:

gain(n) = v ×Qini(n)− c×NT=1
π(n) .

Similar to the Qini curve, the net value curve can be drawn
by computing gain(n) for different values of n. The user has
the option to view the curve and to select the optimal policy

based on organisational constraints. For example, suppose the
organisation has a target of achieving a net benefit of x. In that
case, the net value curve will provide the minimum proportion
of the population that needs to be treated to achieve that goal.
If there are no constraints, the policy that yields the highest
net value can be selected automatically.

D. Online phase

In the online phase, the applicability of the treatment for an
ongoing case with an observed k-prefix is assessed. If the
treatment is not applicable at that point, the assessment is
repeated after the next event. If the treatment is applicable,
the k-prefix of the case is encoded as a feature vector using
the same approach as in the offline phase. Then, the treatment
effect is estimated using the pre-trained ORF model. If the
estimated net gain is sufficiently high according to the pre-
selected treatment policy, the prescriptive monitoring system
recommends applying the treatment.

Let us come back to the example loan origination process.
First, we take a log of this process, clean it, encode the case-
level and event-level features, and create a treatment attribute,
where the value of this attribute is zero for cases that got an
email and 1 for cases that got a phone call. We then divide
this pre-processed dataset into training and testing sets. We use
the training set to train an ORF model. This trained model can
then take an incomplete case as input and returns, as a number,
the estimated effect of calling the customer. We then estimate
the effect of the phone call on all the cases in the test set.
We use these estimates to create a net-value curve. The policy
maker uses the curve to decide the percentage of future cases
that will get the phone call based on organisational constraints.

In the online phase, a new application is created by the
customer. After the execution of each activity, the applicability
of the phone call at that stage is assessed. In the initial stages
of document processing, there is no need for the phone call,
so we move on to the next activity. If we encounter missing
documents in this case, we encode the information about this
case using the same method as in the offline phase and estimate
the treatment effect using our trained ORF. Suppose that the
selected policy is to treat half of the cases. If the estimated
effect for this new case is in the top 50% of the cases we have
had so far, we call this customer; otherwise, we send an email.

VI. EVALUATION

To assess our approach, we conducted experiments on two
real-life logs, measured the estimated causal effect of our
recommendations, and compared the results with improvement
suggestions identified by non-causal methods commonly used
for prescriptive process monitoring [2]–[4].

A. Experimental Setup

The logs we used are the BPI17 and BPI19 logs, available
from the 4TU Centre for Research Data.1 We used these
two datasets because they contain interventions that could
possibly have a causal effect on the cycle time. Moreover,

1https://data.4tu.nl



Log Number of trees Minimum leaf size Maximum depth Sub-sample ratio Lambda reg
BPI17 200 20 30 0.4 0.01
BPI19 200 10 10 0.7 0.01

Table I: Parameter setting for training the ORF models

each log shows unique features. BPI17 is characterised by
a combination of case-level and event-level attributes, while
most of the attributes in the BPI19 log are case-level.

BPI17: This log contains traces of a loan application process
of a Dutch financial institute. The data contains attributes about
the applications and the loan offers made by the bank.

BPI19: This log contains traces from a purchase-to-pay pro-
cess of a Dutch multinational company. Each case describes a
purchase order item from its creation to payment. This log also
records activities such as changes, cancellations, and message
exchange related to purchase orders.
Evaluation measures: In the literature, CATE estimators are
often evaluated by computing Qini curves. The underpinning
intuition is that if the CATE is estimated accurately, the cases
with a positive outcome in the treated group would have a
higher estimated CATE than those in the same group with
negative outcomes. Also, cases in the control group with a
negative outcome should have a higher CATE than the positive
outcome cases in the same group. Thus, a desirable causal
model has a Qini curve above the random curve.
Training setting: We split the data into 60%–20%–20% for
training, validation, and testing, respectively, by preserving the
temporal order between cases. We used the training set to train
the ORF model, the validation set to tune the hyperparameters,
and the test set to provide an unbiased evaluation of the model.
The details of the training settings are shown in Table I.

B. Results

We discuss the results obtained by running the ORF algorithm
on the two logs above, and compare our results with non-
causal methods based on two predictive models: Lasso and
Random Forest (RF). We chose these two methods because
they had high performance in predicting cycle time in these
two logs. As shown in [20], their performance on these logs is
only slightly lower than deep adversarial models, which are the
state-of-the-art in predictive monitoring, while having signifi-
cantly lower training time. To resemble the setting assumed by
predictive monitoring techniques, these models were trained
on untreated cases only. Specifically, the baseline approach is
one that predicts the cycle time given that no intervention is
made, and triggers an intervention if the predicted cycle time
is above a threshold. This threshold is set in such a way that
X% of the cases in the testing set are targeted, where X is an
independent variable in the experiment.

1) BPI17: This log shows a number of cases with unusually
long duration. This severely impacts customer experience and,
in many cases, leads to a negative outcome. However, since
this is an interactive process, the cause of delay in many cases
is that the bank is waiting for input from the customer to
move on with the process. So, one possible intervention is to
contact the customer to ask for additional information. While
this intervention is effective for many of the cases observed in

this log, the cost of calling all customers might be too high,
or the company might not have the required resources to call
everyone. So, we applied our approach to identify which cases
benefit more from receiving this additional phone call.

2) BPI19: In this log, we observe some activities that indi-
cate a change in the purchase order items. Since changes might
lead to re-work, we hypothesised that avoiding changes leads
to lower cycle times. Specifically, we considered skipping of
activity Change Price as our treatment for this experiment.
However, fixing the price of purchase orders all at the same
time for each case without considering the specific context
of each case leads to a rigid order placement procedure and
might require extra work at the beginning of the process. Thus,
rather than fixing the price at the beginning of every case,
it is beneficial to have a targeted approach. Furthermore, our
approach provides a recommendation for each case, indicating
whether a price change should be permitted or not. In this way,
we can avoid the rework in cases where this change is harmful
and increases cycle time while preserving flexibility in other
cases that are not highly affected by price change.

3) Discussion: The plots in Figure 2 show the Qini curves
of the models constructed in our experiments. The black
dashed line shows the expected incremental reduction in cycle
time if a random policy was used to treat a certain percentage
of the cases and the blue, red, and green lines show the
reduction if the policy was based on the ORF, RF, and Lasso
models respectively. It can be seen that in both datasets,
the expected reduction is higher if the ORF-based policy is
followed rather than policies based on non-causal predictive
models. Notably, the curves for RF and Lasso are below the
random policy line indicating that while predictive models are
good at identifying which cases will take a long time, they
are not necessarily good at identifying which cases should
be targeted with the chosen treatments. The Qini curve for
the BPI17 log shows that treating 90% of the cases with the
highest treatment effect gives the same reduction as treating
everybody. Particularly in the curve for BPI19, it can be seen
that just treating 90% of cases gives a higher reduction in cycle
time than treating everybody. This curve is not monotonically
increasing as usual cumulative gain charts because the quantity
on the y-axis is the difference between treated and non-treated
cases, which in some segments can be negative since the
treatment hurts the outcome in these cases. In the plot for
BPI17, we do not see a decrease because the treatment does
not hurt the outcome, but the treatment effect is low enough
not to result in any gain in the cases in the last decile.

The Qini curves are without cost and benefit multipliers.
So, we proceeded to plot the net value curves for both models
with varying values of v/c, where v is the value of reducing
the cycle time by one day, and c is the cost of applying the
treatment to one case. Rather than the absolute values of v and
c, it is the ratio v/c that affects the shape of the curve. Fig. 3
shows the net value curves with different values of v/c for the



(a) BPI 2017

(b) BPI 2019

Figure 2: Qini curves for ORF models.

two logs. We observe that as the ratio v/c decreases — i.e.
the treatment becomes more expensive relative to the benefit it
provides — the net value of treating the cases decreases, and
so, it becomes more important to apply the treatment with
a more targeted approach. Particularly, in the BPI17 log, the
value of applying the treatment decreases more quickly than
in the BPI19 log. For example, when v/c = 0.3 the net value
of applying the treatment to all cases is close to zero and the
highest benefit is gained if half of the cases are treated. But
in the BPI19 log the highest gain comes with treating 90% of
cases regardless of the value of v/c, and treating all cases still
provides a gain even when v/c = 0.3. This is because the cases
in the former log are shorter and the treatment has less effect,
on average, than in the latter log. Indeed, the mean duration in
the BPI17 is 20 days and the average of the estimated effects
is 1 day, while in the BPI19 log the mean duration is 150 days
and the mean treatment effect is 35 days.

C. Sensitivity Analysis

Like other treatment effect estimation methods, the ORF
algorithm works under the assumption of no unobserved con-
founding. However, when unobserved confounders do exist,
our treatment effect estimates might have some bias. So, one
threat to the internal validity of our results is the possibility of
the presence of unobserved confounders. However, the effects
of these unobserved confounders might be mild enough not
to change our inference. We perform sensitivity analysis to
determine how strong the effects of a confounder need to be in
order for our model to change fundamentally. To achieve this,
we used the Austen plots sensitivity analysis method by Veitch
and Zaveri [21]. We chose this approach because it fully sep-
arates sensitivity analysis and modelling of the observed data,

(a) BPI 2017

(b) BPI 2019

Figure 3: Net value curves for ORF models.

which allows us to use it with any machine learning method.
Furthermore, this approach provides an interpretable model of
the influence of unobserved confounders, which quantifies the
sensitivity of our models to unobserved confounding.

(a) BPI 2017

(b) BPI2019

Figure 4: Sensitivity curves for ORF models.

Figure 4 shows the Austen plots for our models for BPI17 and
BPI19 logs. The solid black line is the sensitivity curve that
indicates values of α, influence on treatment and partial R2



influence on the outcome. This means that if an attribute has α
and partial R2 values above this curve, it would be sufficient
to induce the bias value shown in the plot. The coloured dots
show the influence of the observed potential confounders. The
plots show that our conclusions from these models are robust
to unobserved confounding. Since the coloured dots are well
below the sensitivity curve, even the observed confounders do
not have sufficient power to change the qualitative conclusions
of our experiments. Particularly, the curve for the BPI17 log
is very robust to confounding since it allows for the presence
of variables that have a high effect on treatment assignment
if their influence on the outcome is less than 0.25. Even if
an unobserved confounder exists that fully determines the
treatment policy, it would need to have an influence above
0.25 on the outcome to induce a bias of one day in the result,
which in practice is highly unlikely. The model for BPI19 is
more sensitive to the presence of potential confounders if they
are highly influential on either the treatment or the outcome.
However, since all the observed attributes are shown to be
well below the sensitivity curve, the model is still robust if the
effects of the hidden confounders are similar to the measured
ones. It should be stressed, however, that the presence of strong
hidden confounders is always a possibility, and sensitivity
analysis is constrained to the available data.

D. Threats to validity

The evaluation comes with a threat to external validity (lack
of generalisability) as it focuses on two concrete application
scenarios. This can be addressed by conducting further exper-
iments with logs of different characteristics and from different
domains. A threat to construct validity is that the experi-
ments are based on observational data. Hence, the estimated
treatment effects may not match the true causal effects. To
mitigate this threat, we performed sensitivity analysis to assess
the robustness of our model to unobserved confounding. A
rigorous A/B test should be conducted before deploying the
recommendations of our method in an operational setting.

VII. CONCLUSION AND FUTURE WORK

We proposed a prescriptive monitoring method that recom-
mends if and when to apply an intervention (treatment) to an
ongoing case to decrease its cycle time. The method relies
on orthogonal random forests trained on historical traces to
estimate the decrease in cycle time (the treatment effect)
given the current state of a case. Based on this estimate, the
method calculates the expected gain of the treatment given
a cost function and generates recommendations based on a
user-defined policy. We evaluated the applicability of our
approach based on two real-life logs. The evaluation showed
that the proposed approach yields a higher net gain than
treatment policies based on non-causal predictive approaches,
as previously proposed in the literature. We also showed via
sensitivity analysis that the models built on these datasets are
robust against potential unobserved confounding effects.

The approach assumes a binary treatment setting, i.e. either
a treatment of a given type is applied or not. An avenue for

future work is extending this method to accommodate multiple
treatments (e.g. choosing between one type of treatment or
another) as well as treatments with continuous values. Our
method learns the policy for which cases to treat (whom to
treat). Another direction for future work is optimising the
time of treatment (when to treat). Also, the approach requires
the treatment to be pre-defined. Another direction for future
work is to design methods to automatically discover candidate
treatments from a historical log.
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